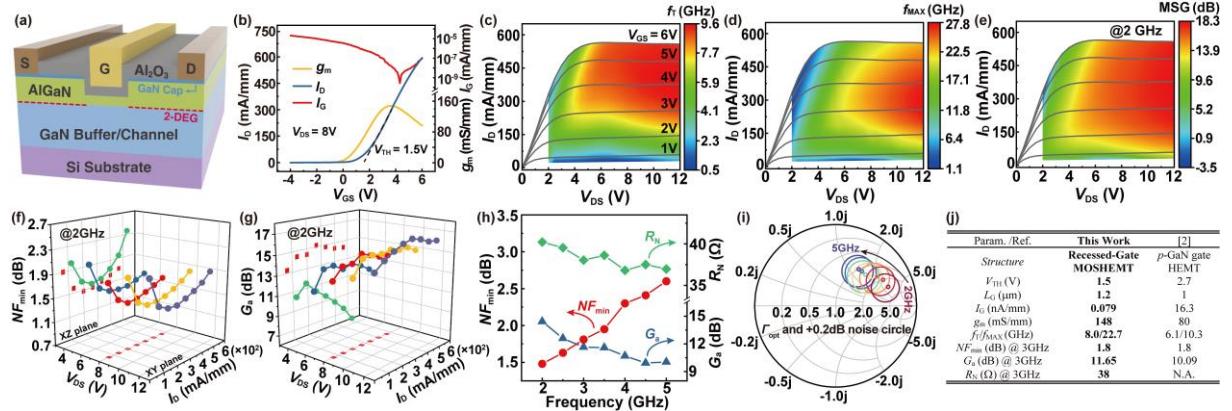


1.48 dB-Noise Figure E-mode Recessed-Gate GaN MOSHEMT by Neutralized Ion Beam Etching for LNA Applications

Wenbo Ye¹, Junmin Zhou¹, Haowen Guo¹, Han Gao¹, and Xinbo Zou^{*1}


¹*School of Information Science and Technology (SIST), ShanghaiTech University, China*

^{*}*Email:zouxb@shanghaitech.edu.cn*

Enhancement-mode (E-mode) GaN-based devices are increasingly receiving research interest for RF applications due to their inherent failure-safe characteristics and compatibility with single-polarity bias design. Among various E-mode GaN transistors, recessed-gate MOSHEMT holds the promise of low gate leakage current with an isolated gate and high g_m due to reduced gate-to-channel distance. However, conventional Cl-based inductively coupled plasma reactive ion etching (ICP-RIE) may generate plasma-associated damage as well as defects, resulting in increased leakage current and deteriorated noise figure. In this work, for the first time, noise performance of recessed-gate MOSHEMTs, featuring a low-damage neutralized ion beam etching and normally-off operations[1], are explicitly investigated for low noise amplifier (LNA) applications.

With a gate length of 1.2 μm , the fabricated device showed a positive voltage threshold (V_{TH}) of 1.5 V, a large saturation drain current of 599 mA/mm, a maximum transconductance of 148 mS/mm, and a working-state gate leakage currents (I_G) of 78.7 pA/mm at a drain current (I_D) of 200 mA/mm (Fig.1(b)). As V_{DS} increased, this device illustrated an improvement in small-signal cutoff frequencies (f_t/f_{MAX}), and achieved a maximum f_t/f_{MAX} of 9.6/27.8 GHz at V_{DS} of 12 V and V_{GS} of approximately 3.5 V (Fig.1(c) & (d)). Meanwhile, this device possessed high maximum stable gain (MSG) of 18.3 dB at 2 GHz and V_{DS} of 12 V (Fig.1(e)). As LNA, this device achieved a NF_{min} of 1.48 dB and an G_a of 14.43 dB at a I_D of 200 mA/mm, a V_{DS} of 8 V, and a frequency of 2 GHz (Fig.1(f) & (g)). As frequency rises from 2 to 5 GHz, NF_{min} was increased from 1.48 to 2.60 dB, G_a decreased from 14.43 to 10.04 dB, R_N decreased from 40 to 37 Ω (Fig.1(h)), and the optimum noise impedance (Γ_{opt}) changed from $0.69\angle 19.8^\circ$ to $0.53\angle 57.67^\circ$ (Fig.1(i)).

A comparison between the recessed-gate MOSHEMT and previous work is displayed in Fig. 1(j). With similar L_G , the recessed-gate MOSHEMT exhibits comparable NF_{min} and G_a to the p -GaN gate HEMT at 3 GHz, while achieving higher f_t / f_{MAX} . This improved performance is attributed to lower level of I_G and higher g_m . This work demonstrate great promise of low NF_{min} E-mode recessed-gate GaN MOSHEMT for receiver front end.

Fig. 1: (a) Structure schematic of recessed-gate MOSHEMT. (b) DC transfer characteristics. Contour charts of (c) f_t , (d) f_{MAX} , and (e) MSG at different DC bias. Dependence of (f) NF_{min} and (g) G_a on DC bias at 2 GHz. Frequency dependence of (h) noise parameters, (i) Γ_{opt} , and +0.2 dB noise circle at I_D of 200 mA/mm and V_{DS} of 8V. (j) Comparison of noise performance of E-mode device between recessed-gate MOSHEMT and p -GaN gate HEMT.

References:

[1] X. Zou *et al.*, *IEEE Electron Device Lett.*, vol. 45, iss. 6, pp. 968–971, 2024.
[2] X. Zou *et al.*, *IEEE Electron Device Letter.*, vol. 44, no. 9, pp. 1412–1415, 2023.